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Ah&act--A calctdation procedure for axisymmetric elliptic flows is appiirxi to predict the transient velocity 
and temperature fields of a heavy fluid jet issuing vertically into a volume of relatively light fluid. This 
situation arises in the outlet plenum of a Liquid-Metal-Cooled Fast Breeder Reactor (LMFBR) during 
reactor transients. The time averaged conservation equations for momenta and heat transfer were solved on a 
CDC66433 digital computer for various plenum i&t t~s~en~, along with a tw~~tion model of 
turbulence and proper modelling of the buoyancy terms. Predictions are presented of flow and heat transfer 
in the form of velocity vector plots and temperature contours. Predictions are in qualitative agreement with 

expectations, invariably establishing that the flow by-passes the outlet plenum. 

NOMENCLATURE quantity x; 

C,, Cz, C,,, constants in the turbulence ( ), averaging symbol. 
model ; 
specific heat at constant pressure [J/kg OK] ; 
gravitational acceleration [m/s”] ; 
generation term for turbulent kinetic 
energy 

; 
length scale of turbulence [m] 

; 
source (or sink) term for the &variable; 
time coordinate [s] 

; 

r41, the coefhcient of diffusion for 4 

; 
Pu, molecular viscosity [kg/ms] 

; 

PI density [kg/m3]. 

Subscripts and symbois 

D/N 
eff, 

4 
4 
x’, 

substantial derivative; 
effective; it stands for enhanced turbulent 
properties ; 
iaminar ; 
turbulent ; 
turbulent fluctuating component of the 

1. INTRODUCTION 

1.1. The problem considered 
A heavy fluid jet issuing vertically into a volume of 

relatively light fluid will not rise indefinitely but will 
reach some maximum height and subsequently flow 
downward. 

This type of flow apart from its general theoretical 
interest, is also of great importance to the reactor 
design engineer, since it arises in the outlet plenum of a 
Liq~d-Metal-~01~ Fast Breeder Reactor (LM- 
FBR) during reactor transients. 

In the primary coolant loop of the reactor, sodium 
coolant enters the pressure vessel through three inlet 
nozzles and flows upward from an inlet plenum, 
through the reactor core and other components and 
instrument trees requiring heat removal, into an outlet 
plenum. Under steady state isothermal operation, 
sodium enters the plenum through an inlet structure, 
and after mixing within the plenum exits through three 
outlet nozzles. During a reactor transient, the plenum 
experiences an abrupt decrease in the entering tem- 
perature and cons~~t~y an increase in the entering 
fluid density. This temperature decrease is accom- 
panied in a normal reactor transient by an exponential 
flow coastdown to about 10% of the initial flow-rate. 
The design of the outlet plenum and components in a 
LMFBR reactor, is largely governed by their response 
to thermal transients. The large fluid volume in the 
outlet plenum provides a region in which thermal 
transients at the inlet can be si~i~~~y mitigated, 
due to flow mixing in the plenum. 

If, however, the cooler, denser sodium has in- 
sufficient inertia upon entering the plenum to over- 
come the negative buoyancy forces, the incoming fluid 
will immediately be forced downward and outward 
toward the exit nozzles, thus short-circuiting the 
plenum and creating a stratified flow pattern. Poten- 
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FIG. 1. The flow domain (schematic). 

tial areas of stagnation could result in temperature 
differentials in the outlet region, which could, in turn, 
cause structural or functional damage to reactor 
com~nen~. 

1.2. Present work 
In the present study, the elliptic differential equa- 

tions governing transient tw~~mensional turbulent 
flow are solved by a procedure first proposed by 
Patankar and Spalding El] for parabolic flows. 

Figure 1 presents a simplified sketch of the desired 
outlet plenum, in the idealised form adopted for the 
present computations. The path of the coolant flow 
(liquid sodium) is vertically upward in the core zone. 
The flow then deflects horizontally at, or near the pool 
cover-gas interface, passes outward at the top and 
then passes downward near the vessel wall, toward the 
outlet nozzles. 

The present model includes simulated core outlet 
(the actual opeu area being less than the totai cross- 
sectional area illustrated in the above figure), simu- 
lated plenum outlet and simulated pool cover in- 
terface. 

1.3. Outline of the paper 
The mathematical formulation and the calculation 

procedure, which is of the finite-difference type, are 
described in Section 2. The results of the computations 
and discussion of these results are presented in Section 
3. Section 4 discusses possible further developments. 

2. MATHEMATICAL STATEMENT OF THE PROBLEM 

2.1. The geometry and governi~ torrential e~u~o~ 
The physical situation illustrated in Fig. 1, may be 

conveniently described in cylindrical coordinates (r, x) the turbulent viscosity. 
where k is the turbulence kinetic energy (&ui) and @, is 
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as a two-d~ensional axis~metric field. Accord- 
ingly, the three outlet nozzles will be modelled as a 
continuous annular slot of the same area as the three 
outlet nozzles, and with its centre at the proper 
elevation. The upper surface of the vessel is assumed to 
be a solid surface in contact with the plenum fluid and 
located at the same elevation as the entrainment 
suppressor plate. 

This flow depends on two space variables ; but, there 
is no dominant direction of flow. Such a flow can be 
described mathematically by partial differential equa- 
tions of the elliptic type. 

Under most circumstances the flow field within the 
plenum will be turbulent. To account for turbulence 
the two-equation model ofI-Iarlow and Nakayama [2] 
as developed by Launder and Spalding [3-51, is 
included. This model uses as dependent variables the 
kinetic energy of turbulence (k) and its friction rate 
(8). Although this model had been devised initially for 
thin shear flows, it has been used successfully for other 
types of flow as well (see for example, Spalding and 
Tatchell[6], Gosman et al. [7], and Khalil et al. [S]). 

Within the above framework, the independent vari- 
ables are the axial (x) and radial (r) components of a 
cylindrical-polar coordinate system and the time (t); 
the dependent variables (tie-average values) are the 
two velocity components (u, u), the static pressure (p), 
the stagnation enthalpy’ (h) and the two turbulence 
quantities (k, E). 

The differential equations for the above dependent 
variables follow : 

(a) Continuity. 

(b) downturn. In a Cartesian system Newton’s 
second law is expressed in tensor notation by: 

a(Pui) + a(puiui) = su 

at 3% 
+ arji 

i axj (2) 

where: ui is the velocity in the i-direction; xj form the 
set of two mutually-orthogonal space coordinates; zji 
is the complete stress tensor; and Su, is the source 
(and/or sink) of z+ 

In a turbulent flow the stress tensor may be ex- 
pressed as : 

Tji =I -_p6ji+lr 

ihi duj - ( > j-g+z& -P4$ (3) 

where: p is the laminar viscosity; ’ denotes fluctuating 
quantities ; - denotes a time average; and aji is the 
Kronecker delta. 

Under the Boussinesq hypothesis we have: 

+ Wi, (4) 
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Substituting (3) and (4) into (1) and providing for 
axiaymmetrical flows, we finish up with: 
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unsteady term and providing for axisymmetric 
geometries we get : 
aw 1 a 
- + ; 

c 
g (pruh) f $ (prvh) 

at -&(rr.,,k~)-~(rr~~~,ka)] 

= 
Sk (13) 

where reff,h is the general transport coefficient for the 
diffusion of h given by : 

and 

JP 
= --&+A,;+s” (6) 

where pelf is the local effective viscosity 

and S represents the source (sink) terms. For a 
Newtonian fluid, assumed to have zero divergence of 
the mass velocity vector, they may be written as: 

a 1 
+~P.,I~u--- - . 

0 ax r 
(8) 

The buoyancy forces caused by changes in volume, 
which are associated with temperature differences, are 
treated as impressed body forces and appear in (7) as: 

MT- T,)g, (9) 

where: p is density; 8 is the coefficient of volumetric 
expansion; g, is the x-component of the gravitational 
acceleration ; and Tm is an average temperature over 
the whole flow field. 

(c) Energy conservation. In tensor notation, 

where J,,, is the flux of the stagnation enthalpy (h) and 
S, is the source {or sink) of h. 

The flux of h is expressed is: 

where o,,~ is the Iaminar Prandtl number. The turbu- 
lent flux of h is given by the “closure” relationship: 

-.p@ = _-J5; (12) 
W I 

where @k,, is the turbulent Prandtl number. 
Substituting (11) and (12) into (lo), introducing the 

I- _L+“. 
eff,k - (14) 

Ok,1 (Th,r 

For turbulent flows, neglecting kinetic heating we also 
have Sk = 0. 

(d) Turbulence kinetic energy 

a<ui> a 
= - (u&) - - z ((k’$)) 

axj J 

d2(U%d) 
li -8 

axiaxj ) 
(15) 

(e) D~~s~p~ion rate of ~rbule~~e 

(16) 

The above equations (15) and (16) are modelled into a 
suitable form following Launder and Spalding [3]. 

2.2. The general equation 
The above set of equations may be expressed into 

the single form 

This is the conservation equation for the transport of a 
property #I of the fluid in a two-dimensional axi- 
symmetric domain, where S, is a collection of terms 
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which do not fit in the framework of the other terms are their turbulent counterparts, to account far the 
and may be called the source (or sink) terms. They are effect of turbulence on mixing. 
defined for each dependent variable 4 in Table (1). It is common to assume that the turbulent Prandtl 

In this table: and Schmidt numbers are unity, making the eddy 

Table 1. The source terns of the conservation equation (17) 

E ; (C, G, - Cz ~4 - p (PC) 

h -;wd 

The source term G, for k and E is given by: 

The source of h implicitly assumes that the Prandtl 
numbers for h and k are equal, and the flow is 
in~mpr~ibIe. This assumption is justified by the low 
speed of the flow. 

pm is an average density over the radial direction at 
each axial station. 

Cr, C, are constants in the (k, E) turbulence model. 
The flow is at a sufficiently high Reynolds number, 

so that we can safely neglect the laminar diffusion 
terms in the k and e equations. The pressure diffusion is 
also unlikely to play a major part. 

Terms representing generation of k by the turbu- 
lence interacting with itself are ignored. 

2.3. De$nitions and auxiliary relations 
The equation set is completed by the follo~ng 

algebraic relation, and auxiliary information: 
The effective viscosity is calculated as peff = p+/.+ 

where p, = C,,p(k2/&); C,, is a constant of the turbu- 
lence model. The length scale of turbulence is given 
by I= C,,k”‘je. 

The local effective exchange coefficients, Ieff,$ for 
the transport of scalar property 4, are calculated’from 
the relation : 

I- eff4 
=L+Ilt 

=w gr,d 

where N, and ur,, are the molecular viscosity and the 
laminar Prandtl numbers respectively, and fit and Q, 
diffusivities of mass (E,,,) and heat (.sH) equal. The 
theoretical predictions, for liquid sodium and for 

Reynolds numbers up to 12 x lo4 for the ratio E,,/Q 
obtain by various studies differ a lot. (Dwyer, [9], 
Tyldesley and Silver, [lo], Borishanski and Zablot- 
skaya, [ 1 l] .) 

A comprehensive comparison among various 
models of predicting the relationship between the 
turbulent transfer of momentum and a passive con- 
taminant such as heat or dissolved matter, is given by 
Reynolds [12]. It is shown there, that even for 
liquid metals (Pr << l)Pr, -+ 1 for Re -+ co, and this is 
the value used herein. 

The value of the Prandtl number for k is taken as 0.9 
and for E is derived from the relation K*/(C,,)~‘~(C~ 
- C,) where ic is the Von Karman constant (= 0.42). 

In the problem under consideration, temperature 
differences bring about differences in density. It is then 
necessary, to include buoyancy forces in the equation 
of motion caused by changes in volume which are 
associated with the temperature differences. These 
forces are treated as impressed body forces, and appear 
in the source term of the u-momentum equation as: (p 

-P,)& 
The buoyancy term is therefore cakulated as fol- 

lows: 

pj(T- T,)g, = F (h-h,) 

4n,z = hi,- = (&,i2 hiJ)i=2,L (19) 
where j is the index in the radial direction and i in the 
axial one. 

2.4. The solution procedure 
The above equations, with appropriate initial and 

boundary conditions, are solved by a finite-difference 
procedure which we need describe here only in outline, 
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it--’ 
I-l I I+1 

FIG. 2. Staggered grid system with indentification of indices. 

a complete account of a similar procedure (but for 
parabolic flows) being given in Patankar and Spalding 

PI* 
The grid layout used is a “staggered” grid system 

where the velocity components are stored midway 
between adjacent grid nodes whilst all the other 
variables are stored at the grid nodes themselves, as 
illustrated in Fig. 2. 

The finite difference counterparts of the differential 
equations are obtained as follows. Integration of the 
partial differential equation governing the transport of 
each variable is performed, for each location of the 
variable, over the control volume that encloses this 
location. These integrations are performed after mak- 
ing presumptions about the manner in which the 
variable is distributed between grid nodes. For most 
purposes we assume that the variable under con- 
sideration varies in a stepwise manner between grid 
points ; however, the convection and diffusion fluxes at 
a control-volume are calculated by assuming a linear 
variation of $I in the direction normal to that face. 

Since an unsteady phenomenon is under study, we 
should consider the values of C#J at the beginning of a 
time step (which are known), and those at the end of 
the step (which are to be calculated). A fully-implicit 
scheme is used, which means that the value of C$ 

appearing in the convection and diffusion terms is 
taken to be the (unknown) value at the end of the time 
step. 

The result of these operations is an algebraic 
equation for each grid location, representing the 
discretized form of the balance of the variable, over the 
control volume corresponding to that location. For a 
general dependent variable #J this equation takes the 
form (see also Fig. 2) 

i= E.W.N,S 

= C Ai4i+AFbi+S”. (20) 
i=E,W,N,S 

Where: A, = T* - feLe 

A, = T,* + (1 -f,)L, 
A, E q*--f,L, 

A, = T,* + (1 -f,)L, 

T = Tiai/Gi 

Li = liz;‘ai 

(21) 

?;* = max[T, -(l -fi)Li,l;:Li] 

A are interpolation factors 
ai are control cell areas 

(21) 

di are internodal distances 
Ti are the diffusion coefficients. 
Sp and SLI are the two parts of the linearised sources 

(and/or sinks) (S = Sp4p+SLl)r the superscript 0 de- 
notes values at the beginning of the time step, AC, and 
the subscript i takes on the values e, w, s, n (see Fig. 2). 

Also : 
tif’, is the mass flux crossing the cell face i, and 

Ai = max[M’, (L,-L,+L,-L,)] (22) 

where 

M = OSp(r, + rJAxAy/At (23) 

the r’s being local radii of curvature. 
A special treatment is applied to the momentum 

equations, developed by Spalding and co-workers 
[ 13-151 for parabolic flows, a key feature of 
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FIG. 3. Outlet temperature vs time. Optimisation of the time-step. 
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which is the so called SIMPLE (for Semi-Implicit- 
Method for Pressure-Linked Equations) algorithm. 
This yields a Poisson equation for the “pressure 
correction” which is used to update the velocity and 
pressure fields. 

Hybrid differencing is used (Patankar and Spalding, 
[l]). The difference equations are solved in turn for 
each variable by the application of the tri-diagonal 
matrix algorithm. 

An important aspect of the solution procedure 
concerns the treatment of the wall boundary con- 
ditions. The incorporation of the effects of the vicinity 
of a wall to turbulence proves expensive in computer 
time. One economical method of accounting for these 
effects is by way of “wall functions”. These functions 
are based on some ideas of Spalding [13] and are 
embodied in algebraic expressions which force the 
numerical solution to behave in a specified manner. 
The wall functions for velocity components and for 
enthalpy are based on the assumption of a log-law in 
the vicinity of a wall. For k, a zero diffusive flux at the 
wall is used ; this is consistent with the assumption of a 
fluid layer of uniform shear stress (which results in a 
log distribution of velocity). For E the empirical 
evidence that a typical length scale of turbulence varies 
linearly with the distance from the wall, is used to 
calculate E itself at the near wall point. 

3. RESULTS AND DISCUSSIONS 

3.1. Computational details 
In the computations from which the following 

results were derived, the finite-difference grid pos- 
sessed 16 intervals in the r direction and 16 intervals in 
the x direction. The grid spacing was non-uniform, the 
grid lines being more closely spaced near the walls than 
near the centre. That the 16 x 16 grid .gave sufficient 
accuracy was confirmed by repeating the calculations 

with finer and coarser grids. As a matter of fact, it is 
only the variation of the turbulence variables (k,.s) 
near the boundaries that dictates such a fine grid. 

A time step of 0.1 s for the first 100s (reactor time) 
was used and then a time step of 1 s. That these time 
steps gave sufficient accuracy was confirmed by repeat- 
ing the calculations with shorter and longer time steps; 
the results of some of these tests are shown in Fig. 3. 

Using the above steps, the variability of the outlet 
temperatures is much less than 1%. 

The computer time needed to establish the steady- 
state solution with the above grid was of the order of 
100 s on a CDC 6600 computer. The transient calcu- 
lations required on average about 2.5 s on a CDC 6600 
computer, for every 1 s of reactor time. 

3.2. Thejlow and thermalfields 
The program is run for a number of iterations until 

steady-state is reached; then the time dependent terms 
are introduced and the program proceeds in time steps. 
The transient operation refers to the sodium stream 
entering the plenum at flow rates and inlet tempera- 
tures which are specified functions of time. The 
program was applied for three such prespecified 
functions. In all of them the flow rate is decreased to 
about 10% of full flow rate after about 250s (reactor 
time) from the initiation of the transient. In the same 
time the inlet sodium temperature is decreased to 
about 7580% of its value at the initiation of the 
transient. The difference of the three tested transients 
lies in the different shape of the inlet temperature vs 

time curves employed. Those transients were con- 
veniently introduced into the program by finding 
analytic expressions for the given time curves by means 
of a polynomial fitting routine. 

Figures 4-10 present the variation, for the three 
test cases, of some turbulence quantities, radially at the 
level of the outlet nozzles (A) and axially at the level of 

Kin energy, A 

FIG. 4. Radial distribution of the turbulence kinetic energy at t = 120 s after the initiation of the transient. 
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Kinenergy, A 

FIG. 5. Radial distribution of the turbufence kinetic energy at t = 210s after the initiation of the transient. 

XDistonce, B 

FIG. 6. Axial distribution of length scale at t = 270 s after the initiation of the transient. 

x Dstonce, e 
5 
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FIG. 7. Axial distribution of length scale at t = 300s after the initiation of the transient. 
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Len-scale, A 

FIG. 8. Radial distribution of length scale at t = 60 s after the initiation of the transient. 

3 

Len-scale, A 

FIG. 9. Radial distribution of length scale at t = 180 s after the initiation of the transient. 

Len-scale, A 

FIG. 10. Radial distribution of length scale at f = 270 s after the initlatlon of the transient. 
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Wocity field 
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FIG. 11. Velocity vector field at t = 0 (steady-state). 

Veloaty field 

/ 

/ 

\ 
: 
. 
. 

c ccc 
ccc 
c c c 

--- 

Y 

\ 

. 

. 

. 

_ - _ 

. * - 
w - * 

_ _ _ 

- c - 
- c - 
-cc 
c-c 

. 

-&?i-z-z-i+ - ) c c - c c c - 

t=60 
FIG. 12. Velocity vector field at t = 60 s after the initiation of the transient. 
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FIG. 13. Velocity vector field at t = 120 s after the initiation of the transient. 
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FIG. 14. Velocity vector field at t = 180s after the initiation of the transient. 
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FIG. 15. Velocity vector field at l = 240 s after the initiation of the transient. 

Woclty field 

FIG. 16. Velocity vector field at t = 300 s after the initiation of the transient. 
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t=30 

FIG. 17. Temperature contours (K) at t = 30 s after the initiation of the transient. 
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t-150 

FIG. 18. Temperature contours (K) at t = 150s after the initiation of the transient. 
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t=2io 

FIG. 19. Temperature contours (K) at I = 210s after the initiation of the transient. 

the first grid line next to the entrance tube (B) (see Fig. 
1). The purpose of these figures is solely to show the 
plausible behaviour of the turbulence model em- 
ployed. The presented turbulence variables are in good 
qualitative agreement with expectations. 

Figure 11 shows the predicted steady-state velocity 
field. It is indicated that under steady-state isothermal 
conditions, the flaw pattern within the plenum re- 
sembles a toroid. 

In all runs, where the increase in density of the 
incoming fluid is accompanied by a flow coastdown to 
about loo/, of the initial flow rate, flow stratification 
invariably occured. Upon entering the plenum the 
fluid was quickly forced downward and outward 
toward the exit nozzles. The predicted flow patterns 
are in good qualitative agreement with expectations 
and small-scale reactor experiments. Figures 12~16* 

*We assign the maximum length not to the largest vector in 
the field, but to a vector equal to twice the average value of ah 
the vectors present. If a vector is larger in magnitude than this 
maximum, we simpIy represent it by a line segment of the 
same sixe, on which we print a symbol z to dist~guish it. 

TThe contours plotting routine is capable of producing 
only one curve per contour value. 

present the predicted flow field for the transient every 
60 s (reactor time) after its initiation. 

Figures 17-20t present the temperature contours 
for a test run. Considering the apparent severity of the 
stratified flow pattern, an abrupt outlet nozzle thermal 
transient might be expected. However, Fig. 21 in- 
dicates a relatively modest outlet transient. Therefore a 
relatively large effective volume of the plenum is still 
active in mixing. 

From the evidence of the computed results, it can be 
concluded that for all the test cases considered the flow 
pattern can be described as follows: -. .._. 

In the steady state, the coolant flows vertically 
upward, deflects horizontally at the top and then 
passes downward near. the vessel wall toward the 
outlet. One large central eddy dominates the flow. 

The flow can be character&d by a Rankine toroid 
driven at the inner opening with a jet emerging from 
the reactor. The Ruid in the outlet plenum is initially 
circulating at normal operating conditions and when 
the reactor is “scrammed” the core jet velocities start to 
decrease and a new pattern develops. 

Initially the core jet velocity becomes quite low, the 
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FIG. 20. Temperature contours (K) at t = 300 s after the initiation of the transient. 
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FIG. 21. Outld.temperature vs time for the three different transients used in the present study. 

mixing zone collapses and the toroid slows up. has insufficient inertia to overcome the negative buoy- 
After some time the jet energy becomes less than ancy forces, and stratification occurs. Instead of penet- 

the difference between the mixed mean temperature rating well into the plenum and mixing with the fluid 
static differential head introduced by the temperature therein, the incoming jet is short-circuiting the plenum, 
and the ,‘inlet temperature of the core outlet. The being forced downward and outward, towards the 
penetration of the jet decays and the toroid becomes outlet nozzles. 
stagnant. At this stage the lower velocity, denser fluid Despite the flow stratification, outlet nozzle tran- 
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effective volume of the plenum remains active in 
mixing. For the time period investigated (300 s) no new 
steady state pattern has yet been established. 

4. CLOSURE 

A finite-difference method has been successfully 
applied to the flow and heat transfer of liquid sodium 
coolant in the outlet plenum of a Fast Breeder Reactor. 
No numerical difficulties have been encountered and 
the computer times required are quite modest. The 
predictions appear satisfactory. Further tasks are the 
following: (i) extension of the method to the three- 
dimensional problem; (ii) incorporation of the com- 
ponents and instrument packages existing in the actual 
plenum; (iii) incorporation of the actual entrainment 
suppression plate at the top of the plenum. 
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ECOULEMENT ET TRANSFERT THERMIQUE TRANSITOIRE DE SODIUM 
LIQUIDE REFRIGERANT DANS LE VOLUME SUPERIEUR DE LA CUVE 

DUN REACTEUR A NEUTRONS RAPIDES 

RisumiLOn applique une procedure de calcul des ecoulements elliptiques et axisymetriques pour 
estimer les champs transitoires de vitesse et de temperature dans un jet de fluide lourd penetrant 
verticalement dans un volume de fluide relativement leger. Cette situation est rencontree dans le volume 
superieur de la cuve dun surgentrateur refroidi par metal liquide (L M F B R) pendant le regime 
transitoire. Les equations de bilan de quantite de mouvement et de chaleur sont resolues sur un 
ordinateur CDC 6600 pour differentes conditions dans le volume mferieur de la cuve, a partir dun 
modile de turbulence a deux equations et dune modelisation convenable des termes de gravite. Des 
previsions d’tcoulement et de transfert thermique sont present&s graphiquement sous forme de cartes des 
vecteurs vitesse et de contours de temperature. Les previsions sont en accord quahtatif avec les 
estimations lesquelles considirent que I’bcoulement by-passe invariablement le volume superieur de la 

cuve. 

INSTATIONARE STRGMUNG UND WARMEtiBERGANG VON FLtiSSIGEM NATRIUM ALS 
KUHLMI’i-fEL IM AUSLASSPLENUM EINES SCHNELLEN BRUTREAKTORS 

Zusammenfassung-Zur Beschreibung des instationlren Geschwindigkeits- und Temperaturfeldes eines 
schweren Fluidstroms, der senkrecht in das Volumen eines relative leichten Fluids gespritzt wird, wurde 
ein Berechnungsverfahren tir achsensymmetrische elhptische Striimung angewendet. Dieser Zustand tritt 
im AuslaBplenum eines fhissigkeitsgekiihlten Schnellen Briiters (LMFBR) w&rend instationlrer 
Betriebszustande des Reaktors auf. Die iiber der Zeit gemittelten Erhaltungsgleich ungen fur Impuls und 
Warmeiiberging wurden auf einer CDC 66CO-Rechenanlage fiir verschiedene Eintrittstransienten des 
Plenums mit Hilfe eines Turbulenzmodehs (beschrieben durch zwei Gleichungen) bei geeigneten 
Annahmen fur die Auftriebs-Terme berechnet. Es werden Voraussagen iiber die Stromung und den 
Warrnetibergang in Form von ‘Bildem des Geschwindigkeitsvektors und der Temperaturverteilung 
gemacht. Die Berechnungen stimmen qualitativ gut mit den Erwartungen iiberein und zeigen einheitlich, 

daB die Strijmung das AuslaBplenum passiert. 
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HECTALJWOHAPHOE TEYEHME Pi TElUlOO6MEH IKMJJKOl-0 HATPklEBOrO 
TEl-UlOHOCMTEJId B KAMEPE HA BbIXOAE I43 libICWOI-0 JIBEPHOI-0 PEAKTOPA 

N - Meronwxa pacr&a 3~1nHrmiYe-c~~~ ypaaHeH&i, on~cb~aaiout~x ocecHMr@rpwiiitde 
IIOTOKH, sicnonb3ymcr p,nx pacrh HecraruroHnpHbrx noneii c~opom~ H rehmeparypu crpy~ 
TmK&IOii mijlKoCTH, BTeKaloLIIeti BCpTHKaJIbHO B 063&I c 6OJW J’I&KOft xrHmcoCTb~. Tarcan CwTyaUHn 
~a6n1onae~cx B KaMepe Ha BbIxOjle ~3 6buzrporo peaKTopa-pa3MHowiTenn c xrwKoMeTannw#zcrcw 
TClIJIOHOCHTWl~M B I’IC~XOZPIbIX pCXCHh&lX. YCpW(HCHHbIe BO B~MWIH )‘PaBHCHHSl COXPWCHHII 

Hbmynbca H IIepCHOCa Tenna peuwuicb Ha s~@p~eoB BbwicnHrenbHofi MauniHe COC 6600 JUIJI 
Pa3JIHYHblX IICpCMCHIibIX IIapahfCTpOB Ha BXOaC B Kah5uZj.E C HClIOflb308aHHeM MOAWIH Typ6yJ’ICHT- 

HOCTU, OlU4CblBiteMO~ JJByMI ypaBHCHURMH, H COOTLlCTCTBj’l0IUCi-t iillII~KCHMWH54 CBO6O.IUiO- 

KOHBCKTHBHOTO WeHa. hCY&THbIC AaHHble IlO TCYCHHKI H TWLJIOO6MCHy II~~CTaBJICIibl B BHnC 

rpU@KOB QnK BeKTOpa CKOPOCTH W paClI~l.W7CHHti TCMIICpaT)‘pbl. Pe3yJIbTaTbI pZlCYt?TOB 

KaYCCTBeHHO COrJIaCytoTCK C O?KHJIaBLLIHMHCIl DaHHblMH H CBHACTWIbCTByIOT 0 TOM, YTO lIpOJiCXOAHT 

IlpOCKOK IlOTOKi3 B KaMCp Ha BbIXOjle H3 peaKTOp& 


