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Abstract—A calculation procedure for axisymmetric elliptic flows is applied to predict the transient velocity
and temperature fields of a heavy fluid jet issuing vertically into a volume of relatively light fluid. This
situation arises in the outlet plenum of a Liquid-Metal-Cooled Fast Breeder Reactor (LMFBR) during
reactor transients. The time averaged conservation equations for momenta and heat transfer were solvedon a
CDC 6600 digital computer for various plenum inlet transients, along with a two-equation model of
turbulence and proper modelling of the buoyancy terms. Predictions are presented of flow and heat transfer
in the form of velocity vector plots and temperature contours. Predictions are in qualitative agreement with
expectations, invariably establishing that the flow by-passes the outlet plenum.

NOMENCLATURE quantity x;
C,,C,, C,, constants in the turbulence { >, averagingsymbol.
model;
C,.  specific heat at constant pressure [J/kg °K]; 1. INTRODUCTION
g, gravitational acceleration [m/s*]; 1.1. The problem considered
G,  generation term for turbulent kinetic A heavy fluid jet issuing vertically into a volume of
energy; relatively light fluid will not rise indefinitely but will
Js5 diffusional flux of ¢; reach some maximum height and subsequently flow
h, stagnation enthalpy [J/kg]; downward.
k, turbulence kinetic energy [m?/s]; This type of flow apart from its general theoretical
L length scale of turbulence [m]; interest, is also of great importance to the reactor
p static pressure [N/m?]; design engineer, since it arises in the outlet plenum ofa
7, local radius of curvature [m]; Liquid-Metal-Cooled Fast Breeder Reactor (LM-
Sy, source (or sink) term for the ¢-variable; FBR) during reactor transients.
t, time coordinate [s]; In the primary coolant loop of the reactor, sodium
T, temperature [K]; coolant enters the pressure vessel through three inlet
u; the velocity component in the i-direction ; nozzles and flows upward from an inlet plenum,
u; = u x-direction velocity, through the reactor core and other components and
u, = v r-direction velocity [m?/s]; instrument trees requiring heat removal, into an outlet
x;,  set of two mutually-orthogonal space plenum. Under steady state isothermal operation,
coordinates [m]. sodium enters the plenum through an inlet structure,
and after mixing within the plenum exits through three
Greek symbols outlet nozzles. During a reactor transient, the plenum
B, coefficient of volumetric expansion [K~'];  experiences an abrupt decrease in the entering tem-
I'y,  the coefficient of diffusion for ¢ ; perature and consequently an increase in the entering
d;  Kronecker deita; fluid density. This temperature decrease is accom-
g, dissipation rate of turbulence energy panied in a normal reactor transient by an expenential
[m%/s%]; flow coastdown to about 10% of the initial flow-rate.
K, Prandt!’s constant ; The design of the outlet plenum and components in a
U, molecular viscosity [kg/ms]; LMFBR reactor, is largely governed by their response
v, kinematic viscosity [m?/s] ; to thermal transients. The large fluid volume in the
o, density [kg/m?]. outlet plenum provides a region in which thermal
transients at the inlet can be significantly mitigated,
Subscripts and symbols due to flow mixing in the plenum.
D/Dt, substantial derivative; If, however, the cooler, denser sodium has in-
eff, effective; it stands for enhanced turbulent sufficient inertia upon entering the plenum to over-
properties; come the negative buoyancy forces, the incoming fluid
i, laminar; will immediately be forced downward and outward
t, turbulent ; toward the exit nozzles, thus short-circuiting the
X' turbulent fluctuating component of the plenum and creating a stratified flow pattern. Poten-
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FiG. 1. The flow domain {schematic).

tial areas of stagnation could result in temperature
differentials in the outlet region, which could, in tumn,
cause structural or functional damage to reactor
components.

1.2. Present work

In the present study, the elliptic differential equa-
tions governing transient two-dimensional turbulent
flow are solved by a procedure first proposed by
Patankar and Spalding [ 1] for parabolic flows.

Figure 1 presents a simplified sketch of the desired
outlet plenum, in the idealised form adopted for the
present computations. The path of the coolant flow
(liquid sodium) is vertically upward in the core zone.
The flow then deflects horizontally at, or near the pool
cover—gas interface, passes outward at the top and
then passes downward near the vessel wall, toward the
outlet nozzles.

The present model includes simulated core outlet
(the actual open area being less than the total cross-
sectional area illustrated in the above figure), simu-
lated plenum outlet and simulated pool cover in-
terface.

1.3. Qutline of the paper

The mathematical formulation and the calculation
procedure, which is of the finite-difference type, are
described in Section 2. The results of the computations
and discussion of these results are presented in Section
3. Section 4 discusses possible further developments.

2. MATHEMATICAL STATEMENT OF THE PROBLEM
2.1. The geometry and governing differential equations

The physical situation illustrated in Fig. 1, may be
conveniently described in cylindrical coordinates {r, x}
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as a two-dimensional axisymmetric field. Accord-
ingly, the three outlet nozzles will be modelled as a
continuous annular slot of the same area as the three
outlet nozzles, and with its centre at the proper
elevation. The upper surface of the vessel is assumed to
be a solid surface in contact with the plenum fluid and
located at the same elevation as the entrainment
suppressor plate.

This flow depends on two space variables; but, there
is no dominant direction of flow. Such a flow can be
described mathematically by partial differential equa-
tions of the elliptic type.

Under most circumstances the flow field within the
plenum will be turbulent. To account for turbulence
the two-equation model of Harlow and Nakayama [2]
as developed by Launder and Spalding [3-5], is
included. This model uses as dependent variables the
kinetic energy of turbulence (k) and its dissipation rate
{c}. Although this model had been devised initially for
thin shear flows, it has been used successfully for other
types of flow as well (see for example, Spalding and
Tatchell [6], Gosman et al. [7], and Khalil et al. [8]).

Within the above framework, the independent vari-
ables are the axial (x) and radial () components of a
cylindrical-polar coordinate system and the time (t);
the dependent variables {time-averaged values)are the
two velocity components (x, v), the static pressure (p),
the stagnation enthalpy” (k) and the two turbulence
quantities (k, &).

The differential equations for the above dependent
variables follow:

{a) Continuity.

% 22 s 2] -0
P 5(pm}+5;(prv)1—. n

(b) Momentum. In a Cartesian system Newton’s
second law is expressed in tensor notation by:

d(pu;) L a(Puj“i) -

at ox

oty

Su; +
i ox

@
7 £
where: u; is the velocity in the i-direction; x; form the
set of two mutualty-orthogonal space coordinates; 7
is the complete stress tensor; and Su; is the source
{and/or sink) of u;.

In a turbulent flow the stress tensor may be ex-
pressed as:

du;  Ou;
Ty = —poy+ul ——+— |~ pu; 3
Ji pé;z ﬂ(axj axi Pu; ¥ ( )
where: p is the laminar viscosity ;' denotes fluctuating
quantities; — denotes a time average; and J is the
Kronecker delta.

Under the Boussinesq hypothesis we have:

du; Ou
pu;u} — u‘(m <+ ’—l) -+ %kéu (4)

ax; Ox;

i
where k is the turbulence kinetic energy (duju) and y,is
the turbulent viscosity.
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Substituting (3) and {4) into (1) and providing for
axisymmetrical flows, we finish up with:

dpiu) 1[0 F 8
8t + ¥ [ébc (puru) or (poru) ox
ou 0 du op
=——+5, (5
X (r.ueff ax) 61’ ( .ueff ar):l ax + u ( )
and
d(pv)

0 ]
— (purv) + — (purv) -
0x

ov
Tlers 5

K
ot ridx
dp

6v> é

< Ll T

et o) o
_-51*

where i is the local effective viscosity

(+u)

and § represents the source (sink) terms. For a
Newtonian fluid, assumed to have zero divergence of
the mass velocity vector, they may be written as:

s 1[6 ( 6&) 3( 615)}
W=7 THett o or Tlets P)
g /1
+Pﬂ(T" Tm)gx+2#effu5— - (7)
x \r
s _l i}
* Tl ox

ou 4 é év):l
P et or ar Fleie or

a 71
+2ph o0 — (-) . (8
ax \r

The buoyancy forces caused by changes in volume,
which are associated with temperature differences, are
treated as impressed body forces and appear in (7) as:

where: p is density; 8 is the coefficient of volumetric
expansion ; g, is the x-component of the gravitational
acceleration; and T,, is an average temperature over
the whole flow field.

{c) Energy conservation. In tensor notation,

é(pu h) aJ,,
ox 0x;
where J, , is the flux of the stagnation enthalpy (k) and

S, is the source {or sink) of h.
The flux of h is expressed as:
u oh

—— ——puik
oy Ox; p

v
+ xueff;:f + Sv (6)

et

~—

(10

= O
J

J B = 1)

where g, is the laminar Prandtl number. The turbu-

lent flux of h is given by the “closure” relationship:
— e Oh

— “‘Ph" = e
p 64,0 OX;

(12)

where g, , is the turbulent Prandtl number.
Substituting (11) and (12) into (10), introducing the
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unsteady term and providing for axisymmetric
geometries we get:

o(ph) 1[0 é
—_ = — {prvh
ot * r [5}&7 (pruf) + or (proh)

0 oh )
2 2 Lo
ox (r ofton 5x) or (r

6h>]
eff.h or
=8, (13)

where T, is the general transport coefficient for the
diffusion of h given by:
u By
Pggp=—"+—.
Oni O
For turbulent flows, neglecting kinetic heating we also
have S, = 0.

(14)

(d) Turbulence kinetic energy

Dk ﬂ
Dt < Ox;
ou,
— 2‘” - )

J
1 ap’ 6236 P
p 0x; 0x7 0x;0x;

{e) Dissipation rate of turbulence

De (82(14) < >)
Dt +2 ax,0x; \ ' ox,

u) [ /0w 0w 5(&;) u; Ou}
N 0x; <<6x, 6x,>) ox) <<6x, 5;;>)
(2

6):; ax 6x,

(15)

i Cued) +
- (ua vﬁx?

J
0%,

_2v2[<(ax,a;j> > ]

The above equations (15) and (16) are modelled into a
suitable form following Launder and Spalding [3].

(16)

2.2. The general equation
The above set of equations may be expressed into
the single form

d 1 i )
7 U+ (rpve

3 ) o¢
=5‘; Feff¢a +r5r "refwa +S,. (17)

This is the conservation equation for the transport ofa
property ¢ of the fluid in a two-dimensional axi-
symmetric domain, where S, is a collection of terms
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which do not fit in the framework of the other terms
and may be cailed the source {or sink) terms. They are
defined for each dependent variable ¢ in Table (1).

In this table:
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are their turbulent counterparts, to account for the
effect of turbulence on mixing.

It is common to assume that the turbulent Prandtl
and Schmidt numbers are unity, making the eddy

Table 1. The source terms of the conservation equation {17)

S,
ap 8 ou 16 rdv ¢ V= )
* o\ B T 5 (e g m(pu P Pr)dx
6p I3} ou 4 10 rov 5 v 0
v - g bl DU Z
6x Fett oo |+ 2o Bt Hete 5~ 2 {ov)
k G,— 0 (pk)
x— PE 7 P
] J
[ Efchk“Cng)—a(PS)
d
h ~—{ph
5{(9 )

The source term G, for k and ¢ is given by:
du dv v\?
G, = —
=] (&) +(5) C) ]
N (é’u N dv\? (18)
o ox) )

The source of h implicitly assumes that the Prandtl
numbers for h and k are equal, and the flow is
incompressible. This assumption is justified by the low
speed of the flow.

P i8 an average density over the radial direction at
each axial station.

C,, C, are constants in the (k, ¢) turbulence model.

The flow is at a sufficiently high Reynolds number,

so that we can safely neglect the laminar diffusion .

terms in the k and ¢ equations. The pressure diffusion is
also unlikely to play a major part.

Terms representing generation of k by the turbu-
Ience interacting with itself are ignored.

2.3. Definitions and auxiliary relations

The equation set is completed by the following
algebraic relation, and auxiliary information:

The effective viscosity is calculated as i = pu+
where p, = C,p(k*/c); C, is a constant of the turbu-
lence model. The length scale of turbulence is given
by I = C,k**e.

The local effective exchange coefficients, I'; , for
the transport of scalar property ¢, are calculated from
the relation:

reff,¢v = . + e

Oy  Ouo

where yi. and o, , are the molecular viscosity and the
laminar Prandtl numbers respectively, and y, and o, 4
diffusivities of mass (s,) and heat (sy) equal. The
theoretical predictions, for liquid sodium and for

Reynolds numbers up to 12 x 10* for the ratio ey/ey
obtained by various studies differ a lot. (Dwyer, [9],
Tyldesley and Silver, [10], Borishanski and Zablot-
skaya, [11].)

A comprehensive comparison among various
models of predicting the relationship between the
turbulent transfer of momentum and a passive con-
taminant such as heat or dissolved matter, is given by
Reynolds [12]. It is shown there, that even for
liquid metals (Pr « 1)}Pr, — 1 for Re — o0, and this is
the value used herein.

The value of the Prandtl number for k is taken as 0.9
and for & is derived from the relation x%/(C,)"*(C,
—C,) where x is the Von Karman constant (= 0.42).

In the problem under consideration, temperature
differences bring about differences in density. It is then
necessary, to include buoyancy forces in the equation
of motion caused by changes in volume which are
associated with the temperature differences. These
forces are treated as impressed body forces, and appear
in the source term of the u-momentum equation as: (p
»pm)gx'

The buoyancy term is therefore calculated as fol-
fows:

DB(T—T pBg..

g 19)

1 M
)
i=2,L

by, =hy ;= (.._.

e M =-1 2
where j is the index in the radial direction and i in the
axial one.

2.4, The solution procedure

The above equations, with appropriate initial and
boundary conditions, are solved by a finite-difference
procedure which we need describe here only in outline,
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Fi1G. 2. Staggered grid system with indentification of indices.

a complete account of a similar procedure (but for
parabolic flows) being given in Patankar and Spalding
1]

The grid layout used is a “staggered” grid system
where the velocity components are stored midway
between adjacent grid nodes whilst all the other
variables are stored at the grid nodes themselves, as
illustrated in Fig. 2.

The finite difference counterparts of the differential
equations are obtained as follows. Integration of the
partial differential equation governing the transport of
each variable is performed, for each location of the
variable, over the control volume that encloses this
location. These integrations are performed after mak-
ing presumptions about the manner in which the
variable is distributed between grid nodes. For most
purposes we assume that the variable under con-
sideration varies in a stepwise manner between grid
points ; however, the convection and diffusion fluxes at
a control-volume are calculated by assuming a linear
variation of ¢ in the direction normal to that face.

Since an unsteady phenomenon is under study, we
should consider the values of ¢ at the beginning of a
time step (which are known), and those at the end of
the step (which are to be calculated). A fully-implicit

1569

appearing in the convection and diffusion terms is
taken to be the (unknown) value at the end of the time
step.

The result of these operations is an algebraic
equation for each grid location, representing the
discretized form of the balance of the variable, over the
control volume corresponding to that location. For a
general dependent variable ¢ this equation takes the
form (see also Fig. 2)

Z Aip,—Spdp
i=EW,N,S
= ¥ Ad+A30+Sy. (20)
i=E,W,N,S
Where: Ap=T*~f.L,
AW = Tl’l." + (1 _fw)Lw
Ay=Tr-f,L
n=Tr-fL, 1)
As = T;"’*‘ (1 _f;)Ls
T, = Ta,/6;
L;= n/'a;
T* = max[ T, —(1-f)L;, fiL]] (21

f; are interpolation factors

a; are control cell areas

é; are internodal distances

I'; are the diffusion coefficients.

Spand Sy are the two parts of the linearised sources
(and/or sinks) (S = Sp¢p+Sy), the superscript O de-
notes values at the beginning of the time step, Ar, and
the subscript i takes on the values e, w, s, n (see Fig. 2).

Also:

', is the mass flux crossing the cell face i, and

A§ = max[M° (L,—L,+L,-L,)] (22)
where
M = 0.5p(r;+r,)AxAy/At
the r’s being local radii of curvature.

A special treatment is applied to the momentum

equations, developed by Spalding and co-workers

(23)

scheme is used, which means that the value of ¢ [13-15] for parabolic flows, a key feature of

870|—
860%' 8t=10
850— 3t=0I
X 840 860
W3 s30l—
8t=30
=t
b
3t=0l
800}~
790 | | | | | 1 | | |
0 30 60 30 120 150 180 2I0 240 270 300
t, s

Fi1G. 3. Outlet temperature vs time. Optimisation of the time-step.
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which is the so called SIMPLE (for Semi-Implicit-
Method for Pressure-Linked Equations) algorithm.
This yields a Poisson equation for the “pressure
correction” which is used to update the velocity and
pressure fields.

Hybrid differencing is used (Patankar and Spaiding,
[1]). The difference equations are solved in turn for
each variable by the application of the tri-diagonal
matrix algorithm.

An important aspect of the solution procedure
concerns the treatment of the wall boundary con-
ditions. The incorporation of the effects of the vicinity
of a wall to turbulence proves expensive in computer
time. One economical method of accounting for these
effects is by way of “wall functions”. These functions
are based on some ideas of Spalding [13] and are
embodied in algebraic expressions which force the
numerical solution to behave in a specified manner.
The wall functions for velocity components and for
enthalpy are based on the assumption of a log-law in
the vicinity of a wall. For k, a zero diffusive flux at the
wall is used ; this is consistent with the assumption of a
fluid layer of uniform shear stress (which results in a
log distribution of velocity). For ¢ the empirical
evidence that a typical length scale of turbulence varies
linearly with the distance from the wall, is used to
calculate ¢ itself at the near wall point.

3. RESULTS AND DISCUSSIONS

3.1. Computational details

In the computations from which the following
results were derived, the finite-difference grid pos-
sessed 16 intervals in the r direction and 16 intervals in
the x direction. The grid spacing was non-uniform, the
grid lines being more closely spaced near the walls than
near the centre. That the 16 x 16 grid gave sufficient
accuracy was confirmed by repeating the calculations
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with finer and coarser grids. As a matter of fact, it is
only the variation of the turbulence variables (k, &)
near the boundaries that dictates such a fine grid.

A time step of 0.1 s for the first 100s (reactor time)
was used and then a time step of 1s. That these time
steps gave sufficient accuracy was confirmed by repeat-
ing the calculations with shorter and longer time steps;
the results of some of these tests are shown in Fig. 3.

Using the above steps, the variability of the outlet
temperatures is much less than 1%,.

The computer time needed to establish the steady-
state solution with the above grid was of the order of
100 s on a CDC 6600 computer. The transient calcu-
lations required on average about 2.5 s on a CDC 6600
computer, for every 1s of reactor time.

3.2. The flow and thermal fields

The program is run for a number of iterations until
steady-state is reached ; then the time dependent terms
areintroduced and the program proceeds in time steps.
The transient operation refers to the sodium stream
entering the plenum at flow rates and inlet tempera-
tures which are specified functions of time. The
program was applied for three such prespecified
functions. In all of them the flow rate is decreased to
about 109 of full flow rate after about 250s (reactor
time) from the initiation of the transient. In the same
time the inlet sodium temperature is decreased to
about 75-80% of its value at the initiation of the
transient. The difference of the three tested transients
lies in the different shape of the inlet temperature vs
time curves employed. Those transients were con-
veniently introduced into the program by finding
analytic expressions for the given time curves by means
of a polynomial fitting routine.

Figures 4-10 present the variation, for the three
test cases, of some turbulence quantities, radially at the
level of the outlet nozzles (A) and axially at the level of
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FIG. 4. Radial distribution of the turbulence kinetic energy at t = 120 after the initiation of the transient.



Fic. 5. Radial distribution of the turbulence kinetic energy at 1 = 210s after the initiation of the transient.
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F1G. 6. Axial distribution of length scale at t = 270s after the initiation of the transient.
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FIG. 17. Temperature contours (K) at t = 30s after the initiation of the transient.
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F1G. 18. Temperature contours (K) at ¢ = 150 after the initiation of the transient.

814

1575



1576

NicHoLas C. G. MARKATOS

8

,

A

Ind

806,

t=2i10

Fi6. 19. Temperature contours (K) at ¢ = 210s after the initiation of the transient.

the first grid line next to the entrance tube (B) (see Fig.
1). The purpose of these figures is solely to show the
plausible behaviour of the turbulence model em-
ployed. The presented turbulence variables arein good
qualitative agreement with expectations.

Figure 11 shows the predicted steady-state velocity
field. It is indicated that under steady-state isothermal
conditions, the flaw pattern within the plenum re-
sembles a toroid.

In all runs, where the increase in density of the
incoming fluid is accompanied by a flow coastdown to
about 109 of the initial flow rate, flow stratification
invariably occured. Upon entering the plenum the
fluid was quickly forced downward and outward
toward the exit nozzles. The predicted flow patterns
are in good qualitative agreement with expectations
and small-scale reactor experiments. Figures 12-16*

*We assign the maximum length not to thelargest vector in
the field, but to a vector equal to twice the average value of all
the vectors present. If a vector is larger in magnitude than this
maximum, we simply represent it by a line segment of the
same size, on which we print a symbol z to distinguish it.

+The contours plotting routine is capable of producing
only one curve per contour value.

present the predicted flow field for the transient every
60s (reactor time) after its initiation.

Figures 17-20% present the temperature contours
for a test run. Considering the apparent severity of the
stratified flow pattern, an abrupt outlet nozzle thermal
transient might be expected. However, Fig. 21 in-
dicates a relatively modest outlet transient. Therefore a
relatively large effective volume of the plenum is still
active in mixing.

3.3. Conclusions

From the evidence of the computed results, it can be
concluded that for all the test cases considered the flow
pattern can be described as follows:
upward, deflects horizontally at the top and then
passes downward near. the vessel wall toward the
outlet. One large central eddy dominates the flow.

The flow can be characterised by a Rankine toroid
driven at the inner opening with a jet emerging from
the reactor. The fluid in the outlet plenum is initially
circulating at normal operating conditions and when
the reactor is “scrammed” the core jet velocities start to
decrease and a new pattern develops.

Initially the core jet velocity becomes quite low, the
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FI1G. 21. Outlet temperature vs time for the three different transients used in the present study.

mixing zone collapses and the toroid slows up.

After some time the jet energy becomes less than
the difference between the mixed mean temperature
static differential head introduced by the temperature
and the inlet temperature of the core outlet. The
penetration of the jet decays and the toroid becomes
stagnant. At this stage the lower velocity, denser fluid

has insufficient inertia to overcome the negative buoy-
ancy forces, and stratification occurs. Instead of penet-
rating well into the plenum and mixing with the fluid
therein, the incoming jet is short-circuiting the plenum,
being forced downward and outward, towards the
outlet nozzles.

Despite the flow stratification, outlet nozzle tran-
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effective volume of the plenum remains active in
mixing. For the time period investigated (300 s) no new
steady state pattern has yet been established.

4. CLOSURE

A finite-difference method has been successfully
applied to the flow and heat transfer of liquid sodium
coolant in the outlet plenum of a Fast Breeder Reactor.
No numerical difficulties have been encountered and
the computer times required are quite modest. The
predictions appear satisfactory. Further tasks are the
following: (i) extension of the method to the three-
dimensional problem; (ii) incorporation of the com-
ponents and instrument packages existing in the actual
plenum; (iii) incorporation of the actual entrainment
suppression plate at the top of the plenum.
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ECOULEMENT ET TRANSFERT THERMIQUE TRANSITOIRE DE SODIUM
LIQUIDE REFRIGERANT DANS LE VOLUME SUPERIEUR DE LA CUVE
D'UN REACTEUR A NEUTRONS RAPIDES

Résumé—On applique une procédure de calcul des écoulements elliptiques et axisymétriques pour
estimer les champs transitoires de vitesse et de température dans un jet de fluide lourd pénetrant
verticalement dans un volume de fluide relativement léger. Cette situation est rencontrée dans le volume
supérieur de la cuve d’un surgénérateur refroidi par métal liquide (L M F B R) pendant le régime
transitoire. Les équations de bilan de quantité de mouvement et de chaleur sont résolues sur un
ordinateur CDC 6600 pour différentes conditions dans le volume nférieur de la cuve, a partir d’un
modéle de turbulence 4 deux équations et d’une modélisation convenable des termes de gravité. Des
prévisions d’écoulement et de transfert thermique sont présentés graphiquement sous forme de cartes des
vecteurs vitesse et de contours de température. Les prévisions sont en accord qualitatif avec les
estimations lesquelles considérent que I’écoulement by-passe invariablement le volume supérieur de la
cuve.

INSTATIONARE STROMUNG UND WARMEUBERGANG VON FLUSSIGEM NATRIUM ALS
KUHLMITTEL IM AUSLASSPLENUM EINES SCHNELLEN BRUTREAKTORS

Zusammenfassung—Zur Beschreibung des instationiren Geschwindigkeits- und Temperaturfeldes eines
schweren Fluidstroms, der senkrecht in das Volumen eines relative leichten Fluids gespritzt wird, wurde
ein Berechnungsverfahren fiir achsensymmetrische elliptische Strémung angewendet. Dieser Zustand tritt
im AuslaBplenum cines fliissigkeitsgekiihiten Schnellen Briiters (LMFBR) wihrend instationirer
Betricbszustiinde des Reaktors auf. Die iiber der Zeit gemittelten Erhaltungsgleich ungen fiir Impuls und
Wiirmeiibergang wurden auf einer CDC 6600-Rechenanlage fiir verschiedene Eintrittstransienten des
Plenums mit Hilfe eines Turbulenzmodells (beschrieben durch zwei Gleichungen) bei geeigneten
Annahmen fiir die Auftriebs-Terme berechnet. Es werden Voraussagen iiber die Strdmung und den
Wirmeiibergang in Form von Bildern des Geschwindigkeitsvektors und der Temperaturverteilung
gemacht. Die Berechnungen stimmen qualitativ gut mit den Erwartungen iiberein und zeigen einheitlich,
daB die Strdmung das Auslaiplenum passiert.
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HECTAUMOHAPHOE TEYEHUE M TEIIJIOOBMEH XUIKOIO HATPHUEBOI'O
TEIVIOHOCHUTEJIA B KAMEPE HA BBIXOJE U3 BBICTPOI'OC AAEPHOI'O PEAKTOPA

AnmsoTamng — MeTonnka pacyéra UIMOTHYECKHX YPABHEHHM, OIMMCBIBAIOILHX OCECHMMETDHYHBIC
TMOTOKH, HMCIHOJb3yeTca UIA pacy€Ta HECTalHOHADHBLIX TOJjedl CKOPOCTH H TeMneparypsl CTPYH
TAKENON KHAKOCTH, BTEKAIOLUEH BEPTHKATLHO B 061EM ¢ Gonee NErkoit xkUAKOCThIO. Takas cCHTyaLHs
HabMI0RaeTCA B KaMepe Ha BhIXOJE U3 OLICTPOro peakropa-pa3MHOXHTENA C KHAKOMETAJUTHYECKHM
TEMUIOHOCHTENIEM B MEPEXOUHLIX DEeXHMax. YCpenHeHHble BO BPEMEHHM YDaBHEHHA COXPaHEHHs
HMOYNbCa M NEPEHOCA TeIUa peianuch Ha uuMdpoBol BbrauciHTENbHOM Mawune COC 6600 mis
Pa3sHYHBIX MEPEMEHHBIX NapaMeTpoB Ha BXOLE B KaMepe C HCMOJIb30BAHHEM MOAENH TypOyneHT-
HOCTH, OMNHKCHLIBAEMON JABYMS YPaBHEHHSIMH, M COOTBETCTBYIOIUEH anmpoKCHMauun cBoOOOHO-
KOHBEKTHBHOIrO WieHa. PacyéTHbie JaHHbIE MO TEYEHHIO M TEINOOOMEHY MApencTaBiieHbl B BHOE
rpaduxoB /i1 BEKTOpa CKOPDOCTH M pacnpefeieHHi TemnepaTypsl. Pe3ynbTaTsl pacyéToB
Ka4eCTBEHHO COIJIACYIOTCH C OXHMOABLUMMHCS JaHHBIMH H CBUAETEILCTBYIOT O TOM, YTO MPOUCXOAMT
NMPOCKOK MMOTOK2 B KaMepe Ha BLIXOAE M3 PEaKTOpa.
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